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Abstract
Collaborative filtering is a marketing method to rec-

ommend items which will be preferred by customers,
where the degree of preferring each item by each user
is predicted by a pre-stored preference data matrix of
various users and items. A common approach to col-
laborative filtering is to approximate an observed tar-
get matrix and predict missing elements in the matrix.
The maximum margin matrix factorization (MMMF)
was recently suggested as an effective method for han-
dling binary or ordinal-discrete valued target matrix
(Srebro et al., 2005). In this study, we proposed a
weighted MMMF which extends the MMMF to deal
with the cases where some matrix elements may have
priorities to other elements. We divided a benchmark
user-movie matrix into sparse and dense sub-matrix
blocks, and put different weights to the blocks. By
setting appropriate weights to the blocks, we could
improve the mean prediction accuracy.

1 Introduction

From a standpoint of machine learning research,
collaborative filtering is defined as an estimation prob-
lem of a true matrix X behind the observed matrix Y
which includes noise and missing values.

A conventional approach to collaborative filtering
is to fit a low rank factor model to the target matrix,
so as to be used for further prediction [5][6][7]. A lin-
ear k-factor model is given by making a n × d target
matrix Y be well represented by a low rank decom-
position X ≡ UV ′, where U and V are n × k and
d× k matrices, respectively. To estimate the low-rank
matrix X, a usual way is based on minimization of
the sum-squared distance between the target matrix
Y and the approximated matrix X. The assumption
behind the linear low-rank model with k-factors is that
there are actually k factors which dominate the user’s
rating behaviors. In general, however, the rank, i.e.,
the effective number of factors, is unknown, and then,
we need to estimate it somehow.

Recently, Rennie and Srebro (2005) [1][2] proposed

a promising approach, the maximum margin matrix
factorization (MMMF) which is applicable for matri-
ces with binary or ordinal ratings values. The MMMF
employs the trace norm of X as a regularization term
rather than setting a pre-determined rank to the ap-
proximated matrix X. In addition, a hinge loss func-
tion is used as the objective function, based on the
idea of maximum margin, like in the support vector
machines.

To introduce a weight to the objective function is
one possibility to reduce prediction error, which leads
to the weighted low-rank matrix factorization [4]. For
example, better prediction can be achieved by putting
smaller weights to elements with possibly a large noise
and larger weights to reliable elements.

In this work, we propose a new approach for collab-
orative filtering, the weighted maximum margin ma-
trix factorization (WMMMF). The WMMMF includes
the above-mentioned two ideas: the MMMF and the
weighted low rank approximation where we assume
different weights between matrix parts with a small
and large missing-value rates. Such an assumption is
expected to be effective because items and users with
different patterns of missing entries can have different
levels of reliability. We apply our method to a bench-
mark movie-rating dataset and compare the prediction
performance with those by some conventional meth-
ods, and show that our new method exhibits better
than the MMMF with uniform weights.

2 Methods for collaborative filtering

In this section, we explain a method for collabo-
rative filtering, the MMMF, and our extension, the
WMMMF.

2.1 Matrix factorization

Given an observation matrix Y with noise and miss-
ing elements, our task is to predict the missing el-
ements in Y . The basic strategy for this problem
is to approximate the observation matrix Y ∈ Rn×d
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by a lower rank matrix X = UV ′ ∈ Rn×d. where
U ∈ Rn×k, V ∈ Rd×k, and k < min(n, d) is a rank
of X. We call X the low rank matrix approximation
of Y = X + E if the error matrix E ∈ Rn×d is small
enough under some criterion.

It is trivial the error matrix is minimum when Y =
X; this is a typical overfitting. In order to avoid such
overfitting, the most popular way is to set a rank of
the approximated matrix X to be appropriately small.
Another way is to introduce a penalty term defined
as the sum of squares of elements in U and V , i.e.,
||U ||2Fro + ||V ||2Fro where || · ||Fro denotes the Frobenius
norm of a matrix. This “conditional” problem does
not consider any restriction of the rank of X.

2.2 MMMF for binary target

Srebro proposed the maximum margin matrix fac-
torization (MMMF) for collaborative filtering, which
uses the trace-norm for a regularization term and a
hinge-loss function for the error criterion [2].

In the MMMF for a binary target matrix, Y ∈
{±1}n×m, we seek a real-valued matrix X which ap-
proximates Y with the smallest error. How good is the
approximation X is evaluated by the objective func-
tion:

J(X) = C||X||Σ +
∑
ij∈S

h(YijXij), (1)

where h(z) = max(0, 1 − z) is the hinge loss, C is
a trade-off constant, and summation is taken for all
observed entries in Y .

The trace norm ||X||Σ is the sum of the singular
values of X, and is given by the Frobenius norm of
the factored matrix as follows.

Lemma 1. If the matrix X is factorized as X =
UV ′, the trace norm ||X||Σ is given by

||X||Σ = min
X=UV ′

||U ||Fro ||V ||Fro

= min
X=UV ′

1
2
(||U ||2Fro + ||V ||2Fro).

By using the character of the trace norm in Lemma
1, Srebro et al. [2] also obtained a factored version of
the minimization of the objective function

J(U, V ) =
C

2
(||U ||2Fro + ||V ||2Fro) +

∑
ij∈S

h(YijXij), (2)

where min J(U, V ) is equivalent to min J(X).

2.3 Weighted maximum margin matrix
factorization for binary target

We introduce a weight parameter into the MMMF
and derive the WMMMF. This is a combination of the

ideas of MMMF [2] and weighted low-rank approxima-
tion [4]. In the WMMMF, a weighted loss is used as
the objective function

J(U, V ) =
C

2
(||U ||2Fro + ||V ||2Fro) +

∑
ij∈S

Wijh(YijXij). (3)

Wij is a weight value corresponding to the ij element
of the target matrix, Yij . The weight represents the
importance of elements of the target matrix for predic-
tion, so that, for example an unreliable element with
a large noise has a small weight and hence a low con-
tribution to the prediction.

2.4 Weighted MMMF for rating target

To consider ordinal rating data, Yij ∈ {1, 2, ..., R},
in collaborative filtering, we use an ordinal hinge loss
in place of the hinge loss used in [1]. Then, the ob-
jective function of WMMMF for ordinal rating data is
given by

J(U, V, θ) =
C

2
(||U ||2Fro + ||V ||2Fro)

+
R−1∑
r=1

∑
ij∈S

Wijh(T r
ij(θir − Xij)), (4)

where T r
ij is such a binary index that T r

ij = +1 for r ≥
Yij and T r

ij = −1 for r < Yij , and θi1, ..., θir, ..., θi(R−1)

are R − 1 thresholds for the ith user; the thresholds
define the relationship between a real valued Xij and
ordinal rating value of Yij , so that θi(Yij−1)+1 ≤ Xij ≤
θi(Yij) − 1 holds for each element. In the MMMF and
WMMMF, the thresholds θir should be determined
from data, and different setting of thresholds depen-
dent on users may cause better prediction. Therefore,
we try to minimize the objective function with respec-
tive to the matrix X = UV ′ and the thresholds θ.

We use a gradient descent method for locally mini-
mizing J(U, V, θ) based on the partial derivative with
respect to each element of U , V , and θ :

∂J

∂Uia
= CUia −

R−1∑
r=1

∑
j|ij∈S

wijT
r
ijh

′(T r
ij(θir − UiV

′
j )

)
Vja, (5)

∂J

∂Vja
= CVja −

R−1∑
r=1

∑
i|ij∈S

wijT
r
ijh

′(T r
ij(θir − UiV

′
j )

)
Uia, (6)

∂J

∂θir
=

∑
j|ij∈S

wijT
r
ijh

′(T r
ij(θir − UiV

′
j )

)
. (7)

In order to obtain stable derivative, we used a
smoothed hinge loss function in place of the naive
hinge loss function in the following experiments.

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 544



Figure 1: The relationship between the sub-matrices,
the dense block and the sparse blocks, and their weight
values

3 Experiments

We examined our methods by a subset of the Each-
Movie dataset [3]. It contains a matrix of 5000 users
for 1623 movies, each of whose elements is a rating
value {1, 2, . . . , 6}. 1000 users were picked up out of
5000 from the original data into a 1000× 1623 matrix
among which there are 63592 observed entries. We di-
vided the observed elements in the data matrix into
70% for training and 30% for test; we randomly pre-
pared 10 different sets of training and test elements.

In the preprocessing phase, we divided users into
sparse and dense users according to the numbers of
missing values in their vectors, and also divided movies
into sparse and dense ones similarly. We called the
sub-matrix of dense users and dense movies a dense
block and the others sparse blocks. The dense block
contained about 8000 observed entries and missing
rate in this block was about 60%, and the sparse blocks
contained 36000 observed entries and missing rate in
these blocks was about 97%. We put different weights
2(1−λ) and 2λ to the dense and sparse blocks, respec-
tively (See Figure 1).

In the training phase, we applied the WMMMF
with various values of the weight λ and the trade-off
constant C. For each missing entry, a discrete rating
value was estimated by applying discretization.

In evaluation, we used mean absolute error (MAE)
as the prediction accuracy. We also examined how
the performance behaves for various values of the
weight λ and the trade-off constant C (Figure 2). We
found that the best result was achieved at λ = 0.65
and C = 1011/8 = 23.71. If appropriate values for
the weight and the trade-off constant are given, our
method obtained a better result than the MMMF
which is equivalent to our WMMMF with a special
setting of λ = 0.5.

The best prediction error for each method for each
training/test division is shown in table 1. The pre-
diction errors decreased by introducing weights in all
cases. It should be noted that the difference in the

Figure 2: A contour plot of MAE to show the depen-
dence of the weight λ and the trade-off constant C

average error between by the WMMMF and MMMF
was comparable to the standard deviation, implying
the improvement was not so substantial. And, the es-
timated accuracies should include overestimation be-
cause the weight parameter was optimized with re-
spect to the test accuracy, which leads to incom-
plete validation. However, the optimized values of the
weight λ was consistently larger than 0.5, suggesting
that putting a larger weight to the sparse blocks im-
proved the performance.

Next, we applied the WMMMF to another situation
where we perform prediction of only a part of matrix of
particular users and particular items. In a recommen-
dation system, there can be some cases to seek users
who will prefer particular items, or to seek items which
will be preferred by particular users. In such a situa-
tion, the requested users and items should be highly
weighted for better prediction. Here, we regarded the
dense part as to be estimated and evaluated predic-
tion errors only in the dense part. We compared three
ways of estimation; MMMF1 applies MMMF only to
the dense part, MMMF2 applies MMMF with uniform
weights, and WMMMF provides a best value of weight
to the dense part (Table 2). We found that the pre-
diction error was decreased by the WMMMF for every
training/test division, and then concluded the WM-
MMF is a good method in such a situation.

4 Discussion and Conclusions

In this study, we proposed a new method for col-
laborative filtering. The experiments showed that our
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Table 1: Prediction errors of user-movie rating data. MAE performed by MMMF and WMMMF, and the best
weight value λ in WMMMF are shown for 10 trials of training/test divisions.

Dataset 1 2 3 4 5 6 7 8 9 10 mean ± std.
MMMF 0.9012 0.9059 0.9121 0.9102 0.9084 0.9157 0.9136 0.9102 0.9135 0.9122 0.9103 ± 0.0043

WMMMF 0.8973 0.9045 0.9078 0.908 0.902 0.9118 0.9075 0.9053 0.9127 0.9086 0.9065 ± 0.0045
λ 0.65 0.55 0.55 0.6 0.65 0.55 0.6 0.6 0.65 0.6

Table 2: Prediction errors only on the dense part of user-movie rating data. Three different ways, MMMF1,
MMMF2, and WMMMF are compared. MAEs obtained by the three ways and the best weight values λ are shown
for 10 datasets.

Dataset 1 2 3 4 5 6 7 8 9 10 mean ± std.
MMMF1 0.8602 0.8701 0.8742 0.8726 0.8704 0.8789 0.8673 0.8696 0.8731 0.8877 0.8724 ± 0.0072
MMMF2 0.8364 0.859 0.8638 0.8505 0.8673 0.8442 0.8316 0.8385 0.8451 0.8382 0.8474 ± 0.0123
WMMMF 0.8352 0.8501 0.8537 0.849 0.8527 0.8408 0.8297 0.8443 0.8375 0.8321 0.8425 ± 0.0087

λ 0.35 0.4 0.3 0.45 0.3 0.45 0.4 0.45 0.45 0.45

WMMMF is effective. In our method, however, the
weight matrix W has been added to the variables of
the original MMMF, U, V, θ, so this method needs a
more computational cost than the MMMF. It is nec-
essary to devise a method for obtaining good values
of the weight and the trade-off constant in an effi-
cient manner. In addition, since the objective func-
tion J(U, V, θ) is not convex, the optimization process
sometimes falls into local minima as can be seen in
the original MMMF. To overcome these problems is
our future study.
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